The Pandas Numpy library provides some useful methods to perform slicing, reshaping, and concatenation. The following program show you how to perform these operations
#a.Array slicing, reshaping, concatenation and splitting
#1.Slicing
import numpy as np
import pandas as pd
a = np.arange(20)
print("------------------------------------")
print("1.Slicing")
print("------------------------------------")
print("The array is :");
print(a)
print("Slicing of items starting from the index:")
print (a[2:8])
#2.reshaping
print("------------------------------------")
print("2.Reshaping")
print("------------------------------------")
data = pd.DataFrame(np.arange(6).reshape((2, 3)),
index=pd.Index(['Ohio', 'Colorado'], name='state'),
columns=pd.Index(['one', 'two', 'three'], name='number'))
print("------Before Reshaping--------------")
print(data)
result = data.stack()
print("------After Reshaping--------------")
print(result)
#3.Concatenation
print("------------------------------------")
print("3.concatenation")
print("------------------------------------")
s1 = pd.Series([0, 1], index=['a', 'b'])
s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e'])
s3 = pd.Series([5, 6], index=['f', 'g'])
c=pd.concat([s1, s2, s3])
print(c)
print("------------------------------------")
print("3.Arrays Splitting")
print("------------------------------------")
arr = np.array([1, 2, 3, 4, 5, 6])
print("before splitting array is",arr)
new = np.array_split(arr, 3)
print(" New arrays are")
print(new[0])
print(new[1])
print(new[2])
The output is as follows
------------------------------------
1.Slicing
------------------------------------
The array is :
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
Slicing of items starting from the index:
[2 3 4 5 6 7]
------------------------------------
2.Reshaping
------------------------------------
------Before Reshaping--------------
number one two three
state
Ohio 0 1 2
Colorado 3 4 5
------After Reshaping--------------
state number
Ohio one 0
two 1
three 2
Colorado one 3
two 4
three 5
dtype: int32
------------------------------------
3.concatenation
------------------------------------
a 0
b 1
c 2
d 3
e 4
f 5
g 6
dtype: int64
------------------------------------
3.Arrays Splitting
------------------------------------
before splitting array is [1 2 3 4 5 6]
New arrays are
[1 2]
[3 4]
[5 6]
0 comments :
Post a Comment
Note: only a member of this blog may post a comment.