Saturday 9 July 2022

Goals and applications of machine learning

The primary purpose of machine learning is to discover patterns in the user data and then make predictions based on these and intricate patterns for answering business questions and solving business problems. Machine learning helps in analyzing the data as well as identifying trends.

The Goals of Machine Learning.

The goal of ML, in simple words, is to understand the nature of (human and other forms of) learning, and to build learning capability in computers. To be more specific, there are three aspects of the goals of ML.

  1. To make the computers smarter, more intelligent. The more direct objective in this aspect is to develop systems (programs) for specific practical learning tasks in application domains.
  2. To develop computational models of human learning process and perform computer simulations.
  3. The study in this aspect is also called cognitive modelling.
  4. To explore new learning methods and develop general learning algorithms independent of applications

Applications of Machine learning

Machine learning is a buzzword for today's technology, and it is growing very rapidly day by day. We are using machine learning in our daily life even without knowing it such as Google Maps, Google assistant, Alexa, etc. Below are some most trending real-world applications of Machine Learning:

1. Traffic Alerts (Maps)

Now, Google Maps is probably THE app we use whenever we go out and require assistance in directions and traffic. The other day I was traveling to another city and took the expressway and Maps suggested: “Despite the Heavy Traffic, you are on the fastest route“. But, How does it know that?

Well, It’s a combination of People currently using the service, Historic Data of that route collected over time and few tricks acquired from other companies. Everyone using maps is providing their location, average speed, the route in which they are traveling which in turn helps Google collect massive Data about the traffic, which makes them predict the upcoming traffic and adjust your route according to it.

2. Social Media (Facebook)

One of the most common applications of Machine Learning is Automatic Friend Tagging Suggestions in Facebook or any other social media platform. Facebook uses face detection and Image recognition to automatically find the face of the person which matches it’s Database and hence suggests us to tag that person based on DeepFace.

Facebook’s Deep Learning project DeepFace is responsible for the recognition of faces and identifying which person is in the picture. It also provides Alt Tags (Alternative Tags) to images already uploaded on facebook. For eg., if we inspect the following image on Facebook, the alt-tag has a description.

3. Transportation and Commuting (Uber) 

If you have used an app to book a cab, you are already using Machine Learning to an extent. It provides a personalized application which is unique to you. Automatically detects your location and provides options to either go home or office or any other frequent place based on your History and Patterns.

It uses Machine Learning algorithm layered on top of Historic Trip Data to make a more accurate ETA prediction. With the implementation of Machine Learning, they saw a 26% accuracy in Delivery and Pickup.

4. Products Recommendations

Suppose you check an item on Amazon, but you do not buy it then and there. But the next day, you’re watching videos on YouTube and suddenly you see an ad for the same item. You switch to Facebook, there also you see the same ad. So how does this happen?

Well, this happens because Google tracks your search history, and recommends ads based on your search history. This is one of the coolest applications of Machine Learning. In fact, 35% of Amazon’s revenue is generated by Product Recommendations.

5. Virtual Personal Assistants

As the name suggests, Virtual Personal Assistants assist in finding useful information, when asked via text or voice. Few of the major applications of Machine Learning here are:

  • Speech Recognition
  • Speech to Text Conversion
  • Natural Language Processing
  • Text to Speech Conversion

All you need to do is ask a simple question like “What is my schedule for tomorrow?” or “Show my upcoming Flights“. For answering, your personal assistant searches for information or recalls your related queries to collect info. Recently personal assistants are being used in Chatbots which are being implemented in various food ordering apps, online training websites and also in Commuting apps.

6. Self Driving Cars

Well, here is one of the coolest application of Machine Learning. It’s here and people are already using it. Machine Learning plays a very important role in Self Driving Cars and I’m sure you guys might have heard about Tesla. The leader in this business and their current Artificial Intelligence is driven by hardware manufacturer NVIDIA, which is based on Unsupervised Learning Algorithm.

7. Dynamic Pricing

Setting the right price for a good or service is an old problem in economic theory. There are a vast amount of pricing strategies that depend on the objective sought. Be it a movie ticket, a plane ticket or cab fares, everything is dynamically priced. In recent years, artificial intelligence has enabled pricing solutions to track buying trends and determine more competitive product prices.

How does Uber determine the price of your ride?

Uber’s biggest uses of Machine Learning comes in the form of surge pricing, a machine learning model nicknamed as “Geosurge”. If you are getting late for a meeting and you need to book an Uber in a crowded area, get ready to pay twice the normal fare. Even for flights, if you are traveling in the festive season the chances are prices will be twice the original price.

8. Google Translate

Remember the time when you travelled to a new place and you find it difficult to communicate with the locals or finding local spots where everything is written in a different language.

Well, those days are gone now. Google’s GNMT(Google Neural Machine Translation) is a Neural Machine Learning that works on thousands of languages and dictionaries, uses Natural Language Processing to provide the most accurate translation of any sentence or words. Since the tone of the words also matters, it uses other techniques like POS Tagging, NER (Named Entity Recognition) and Chunking. It is one of the best and most used Applications of Machine Learning.

9. Online Video Streaming (Netflix)

With over 100 million subscribers, there is no doubt that Netflix is the daddy of the online streaming world. Netflix’s speedy rise has all movie industrialists taken aback – forcing them to ask, “How on earth could one single website take on Hollywood?”. The answer is Machine Learning.

The Netflix algorithm constantly gathers massive amounts of data about users’ activities like: When you pause, rewind, or fast forward

  • What day you watch content (TV Shows on Weekdays and Movies on Weekends)
  • The Date and Time you watch
  • When you pause and leave content (and if you ever come back)
  • The ratings Given (about 4 million per day), Searches (about 3 million per day)
  • Browsing and Scrolling Behavior

And a lot more. They collect this data for each subscriber they have and use their Recommender System and a lot of Machine Learning Applications. That’s why they have such a huge customer retention rate.


Post a Comment

Note: only a member of this blog may post a comment.

Machine Learning



Java Tutorial




C Programming


Python Tutorial


Data Structures


computer Organization